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Abstract

Knowledge diffusion models typically involve two main
features: an underlying social network topology on
one side, and a particular design of interaction rules
driving knowledge transmission on the other side. Ac-
knowledging the need for realistic topologies and adop-
tion behaviors backed by empirical measurements, it
becomes unclear how accurately existing models ren-
der real-world phenomena: if indeed both topology
and transmission mechanisms have a key impact on
these phenomena, to which extent does the use of more
or less stylized assumptions affect modeling results?
In order to evaluate various classical topologies and
mechanisms, we push the comparison to more empir-
ical benchmarks: real-world network structures and
empirically measured mechanisms. Special attention
is paid to appraising the discrepancy between diffu-
sion phenomena (i) on some real network topologies
vs. various kinds of scale-free networks, and (ii) us-
ing an empirically-measured transmission mechanism,
compared with canonical appropriate models such as
threshold models. We find very sensible differences
between the more realistic settings and their tradi-
tional stylized counterparts. On the whole, our point
is thus also epistemological by insisting that models
should be tested against simulation-based empirical
benchmarks.
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1 Outline

Although the issue of knowledge diffusion has usu-
ally been appraised from a theoretical viewpoint, it
stands, above all, for an empirical challenge. Real-
world features, yet, are often represented by stylized
hypotheses, while it is unclear how much diffusion dy-
namics may be affected by such assumptions. After
first recalling the context and literature on knowl-
edge diffusion models in Sec. 2, we thus introduce
a simulation framework in Sec. 3 in order to evalu-
ate the accuracy of various classical topologies and
mechanisms. In other words, we push the compari-
son to more empirical benchmarks: real-world network
structures and empirically measured mechanisms. We
therefore carry a two-step analysis: in Sec. 4, we con-
trast diffusion dynamics between two real networks
and several traditional topologies, notably scale-free
graphs; in Sec. 5, we address interaction rules and
compare an empirically-backed transmission mecha-
nism with its stylized counterparts, such as threshold
or cascade models.

2 Context and rationale

Models of knowledge diffusion within social networks
have known an increased interest in the recent years,
together with various kinds of studies on interac-
tion networks. Initially, research on knowledge dif-
fusion had been principally addressed by social scien-
tists, both in sociology as well as, to a lesser extent,
economics and organization & management sciences
(Coleman et al. 1957; Rogers 2003). Authors in these
fields have long had a qualitative approach, supported
by ethnographic studies endeavoring at exhibiting
mechanisms determinant of knowledge transmission
and adoption behaviors (Robertson 1967; Rogers 1976;
Granovetter 1987; Burt 1987; Valente 1995). In this
area, quantitative models are eventually qualitative
in their interpretation, as they are essentially featur-
ing normative models within formerly acknowledged
theoretical frameworks (Ellison and Fudenberg 1995;
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Abrahamson and Rosenkopf 1997; Deroian 2002).
As knowledge diffusion phenomena are conditioned

by the intricate combination of agent behavior and
structural effects, it progressively became apparent
that it is crucial to correctly design and understand
the effect of underlying network structures. This hap-
pened initially, still, on normative grounds, i.e. with
stylized network structures (Morris 2000; Cowan and
Jonard 2004; Keeling and Eames 2005), while an ear-
lier emphasis by Rogers (1976) on empirical data had
remained a longer term aim:

“For network analysis to fulfill its poten-
tial, however, I feel we must improve the
methods of data gathering and measurement
(...). Longitudinal panel designs for net-
works analysis of diffusion process are also
needed; along with field experiments, they
help secure the necessary data to illuminate
the over-time process of diffusion.” (Rogers
1976)

Such empirical insight was additionally encour-
aged by recent findings from formal and natural sci-
ences (particularly statistical physics and computer
science) concerning several kinds of real-world net-
works, including social networks, and highlighting a
series of notable topological features, such as power-
law (“scale-free”) degree distributions, high cluster-
ing, short network diameter (Watts and Strogatz 1998;
Barabási and Albert 1999, inter alia). Authors from
these fields in turn started to investigate diffusion phe-
nomena from a rather formal viewpoint: adopting a
biological perspective first, building upon the epidemi-
ological literature (Anderson and May 1979; Pastor-
Satorras and Vespignani 2001; Lloyd and May 2001;
Keeling and Eames 2005); then addressing topics in-
creasingly related to social science, for instance ru-
mor and behavior diffusion models (Newman 2002),
thereby shedding light on both traditional issues, such
as the extent of knowledge diffusion, and on more
novel issues, such as, inter alia, effects of extremist
fractions (Deffuant et al. 2002) or spread maximiza-
tion (Kempe et al. 2003).

However, even if some authors insisted on the need
for realistic topologies and diffusion behaviors backed
by empirical measurements (Valente 1996; Wu et al.
2004; Leskovec et al. 2006), it is unclear how accu-
rately present models and corresponding analytic so-
lutions or simulations render real-world phenomena.
If indeed both topology and transmission mechanisms
have a key impact on these phenomena, to which ex-
tent does the use of more or less stylized assumptions
affect modeling results?

First, network topology is often based on common
social network morphogenesis models. Erdős and
Rényi (1959) random graphs (ER) have long been

a convincing reference (Barbour and Mollison 1990;
Wasserman and Faust 1994; Zegura et al. 1996), while
simpler settings use complete graphs or grid-based
networks (Ellison and Fudenberg 1995; Deroian 2002).
Small-world models (Watts and Strogatz 1998) have
also occasionally been considered (Cowan and Jonard
2004), as well as less typical models, for instance fea-
turing a central core everyone is connected to (Bala
and Goyal 1998), or algebraically-constrained net-
works (Morris 2000).

These models seemed rather less realistic when, as
mentioned above, social networks among others were
discovered to be “scale-free” — i.e. their connectivity
distribution follows a power-law, which earlier mod-
els could not render. In the wake of a key result
by Pastor-Satorras and Vespignani (2001) suggesting
that such networks have radically distinct epidemio-
logic properties from those of ER networks,1 in more
recent diffusion models, scale-free networks are hence
often considered (Delgado 2002; Amblard and Def-
fuant 2004; Ganesh et al. 2005; Crépey et al. 2006).

On the other hand, to our knowledge, cultural diffu-
sion models has scarcely been effectively simulated on
real social networks,2 while such approach obviously
guarantees that all structural features of a real-world
social network are present.3 Such networks, addition-
ally, are already widely available (Barabási and Al-
bert 1999; Robins and Alexander 2004; Wu et al. 2004;
Kossinets and Watts 2006).

Second, knowledge diffusion mechanisms, even plau-
sible, are often lacking empirical support; as Leskovec
et al. (2006) put it, “[while former] models address
the question of maximizing the spread of influence in
a network, they are based on assumed rather than
measured influence effects.” A wide variety of be-
haviors can be postulated, from pay-off based models,
common in economics (Ellison and Fudenberg 1995;
Morris 2000), to explicitly knowledge-based models
— based in particular on opinions vectors, continuous
or discrete, one-dimensional (Axelrod 1997; Deroian
2002; Deffuant et al. 2002) or n-dimensional (Gilbert

1More precisely, there is no epidemic threshold for a
particular disease epidemic model (SIS, susceptible-infected-
susceptible) on infinite scale-free networks. Note that this re-
sult does not hold for finite networks, nor for SIR (susceptible-
infected-removed) models (May and Lloyd 2001; Eguiluz and
Klemm 2002).

2This is especially relevant if the timescale of diffusion is
smaller than that of social network evolution (e.g. in the case of
rumors, hypes, etc.), then the social network can be considered
static.

3Wang et al. (2003) show that their model of virus diffusion
is more efficient than that of Pastor-Satorras and Vespignani
(2001) on various topologies, including a real computer network,
while actually not directly comparing how diversely their model
performs between real-world and modeled topologies. Similarly,
Wu et al. (2004) simulate information propagation on a real e-
mail network; yet not estimating how different the behavior
would be in other kinds of (scale-free) networks.
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et al. 2001; Cowan and Jonard 2004; Klemm et al.
2005), revised and updated according to diverse mech-
anisms.

Yet, while such hypotheses yield enlightening mod-
els and stylized facts, it is unclear to what extent real-
istic classes of knowledge diffusion mechanisms could
yield different classes of models and model behaviors.
In this respect, projects such as that of Valente (1996)
seem to be isolated.

In line with recent efforts at appraising the role
of various topologies (Amblard and Deffuant 2004;
Ganesh et al. 2005; Crépey et al. 2006) and distinct
mechanisms (Deffuant 2006), the aim of this paper is
thus to push the comparison to more realistic bench-
marks: real-world network structures and empirically
measured propagation mechanisms. As we lack em-
pirical data appraising at the same time knowledge
transmission behaviors and underlying social network
topology, we have to restrain our analysis to issues
pertaining to topology on one side and, separately,
to transmission rules on the other side. More pre-
cisely, we will appraise the discrepancy between styl-
ized (in particular scale-free) networks and real-world
networks (Sec. 4) and between stylized (in particular
threshold) knowledge transmission models and realis-
tic mechanisms (Sec. 5).

3 Simulation framework

3.1 Agents and information

We consider a set of N agents and a single piece of
information which each agent may know of, or not. In
other words, at any time t, the cultural state of the
system can be described by a vector c(t) ∈ {0, 1}N ,
such that ci(t) = 1 if the i-th agent knows the piece
of information at t, otherwise ci(t) = 0.

We assume knowledge acquisition to be strictly
growing: agents acquiring the piece of information
cannot lose it afterwards. In epidemiological terms,
this is close to a “SI” model (Hethcote 2000). For-
mally, this means that c is a growing function of time:
t ≤ t′ ⇒ c(t) ≤ c(t′).

3.2 Simulations

The initial setting is such that a given proportion λ of
agents are initially “informed” (i.e. λN agents), while
others are “ignorant” (i.e. (1− λ)N).

Our discrete time simulation features knowledge ex-
change between agents interacting with each other. At
each time step one interaction occurs, possibly leading
to transmission of knowledge :

• Interaction — occurring between pairs of agents
chosen in the following way: a target agent i is
chosen randomly among the population, then one
of his neighbors j is randomly selected.

• Transmission — if the chosen neighbor j is in-
formed (i.e. cj(t) = 1), target agent knowledge
is updated according to an information adoption
rule to be specified below.

This kind of simple protocol belongs to the wider
family of gossip-based models (see Kempe and Klein-
berg 2002, for instance). In a descriptive rather than
normative perspective, we therefore consider that the
social network represents past acquaintances which
potentially induce future interactions, rather than be-
ing a permanent interaction network, where individu-
als are concurrently subject to the influence of all their
neighbors. While this later approach is indeed more
plausible for computer or neuron networks, epidemi-
ology in the broad sense calls for more asynchronous
models, where interactions between agents are the ba-
sic unit of study. As such, we take the social network
as a static framework wherein social interactions take
place in a dynamic setting: for any given period, ac-
tual dyadic interactions are chosen within the set of
links composing the wider social network.

We measure the ratio of informed agents ρ among

the whole population over time, ρ(t) =
1
N

N∑
i=1

ci(t),

while using a totally random initial spread of informed
agents (only ρ(0) = λ). Even if richer patterns could
be thought of (such as e.g. infection time as a function
of the distance, density of infected nodes) and richer
initial conditions could also affect results (a particular
choice of informed nodes consisting of, e.g., so-called
superspreaders) (Crépey et al. 2006; Deffuant 2006),
this part of the protocol remains extremely simple so
that effects are both easily comparable across other
conditions as well as already yielding very contrasted
results.

4 Effect of the topology

We first discuss dynamics of information acquisition
by focusing on topology. We use several network
topologies produced by a gradual impoverishment of
two original real networks as explained below.

4.1 Empirical real networks

We use two real networks. The first one comes from
a scientific collaboration network: nodes are authors
and links represent coauthorship. We use data from
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Figure 1: Cumulated degree distributions for the var-
ious network structures, using the Medline-base col-
laboration network (top) and the board interlock net-
work (bottom). x-axis: degree k, y-axis: N (k) =∑∞
k′=kN(k′).

the “Medline” bibliographical database4 for embryol-
ogists working on the model-animal zebrafish — we
consider articles mentioning “zebrafish” in their title
or abstract (the field is such that authors working on
this topic are unlikely not to mention it at least in
the abstract) over years 2000–2004. We consider only
the largest connected component. It is made of 6453
agents and 67392 undirected links, from a database
of 2476 publications. The second network features di-
rectors jointly attending boards of major US firms or
public institutions: nodes are directors and links are
co-attendance relationships. This board interlock data
comes from the website “Theyrule” 5. The largest
connect component of this network is made of 4656
nodes and 76600 undirected links from a database
of 516 corporate boards. Their degree distributions,

4Freely available from http://www.pubmed.com. Addition-
ally, the particular network data used in this paper is hereat-
tached.

5Data freely available from http://www.theyrule.net

shown on Fig. 1, exhibit a power-law tail with a flat-
ter head, typical of collaboration networks (Barabási
and Albert 1999; Newman and Park 2003; Guimera
et al. 2005) and several other social networks (Bo-
guna et al. 2004; Holme et al. 2004; Kossinets and
Watts 2006). While this kind of connectivity is often
called “scale-free” or “power-law” in the literature, it
may also accurately be fitted and described as “broad
scale”, “stretched-exponential”, “log-normal” or “q-
exponential” (Amaral et al. 2000; Redner 2005; White
et al. 2006) on finite networks.

4.2 Topologies

Starting from the original empirical network, we in-
vestigate several network topologies created by pro-
gressively degenerating the original structure, i.e. by
keeping less and less topogical features:

• Real Network (RN) — The real network is ei-
ther the original scientific collaboration network
or board interlock network (respectively RN1 and
RN2).

• Scale-Free (SF) — The so-called “scale-free” net-
works (SF1 and SF2) are built from the original
real networks (RN1 and RN2) by reshuffling links
while preserving the original degree distribution
(Molloy and Reed 1995). Total numbers of agents
N and links M are also identical to those of the
corresponding real networks, so original density
d = M/N(N − 1) is also preserved for both net-
works.

• Erdös-Rényi (ER) — These are ER random
graphs (Erdős and Rényi 1959) (ER1 and ER2)
that only preserve the original RN densities, using
the same number of nodes N . Contrarily to SF
and RN, the resulting degree distribution can be
approximated by a Poisson law (Bollobás 1985),
as shown on Fig. 1.

• Complete Network (CN) — The complete net-
works (CN1 and CN2) only share the number
of agents N with the respective real networks
(respectively RN1 and RN2). In contrast to
other topologies, each agent is connected to all
other agents, the total number of links is thus
N(N − 1)/2.

4.3 Clustering structure

Apart from degree distributions, the clustering struc-
ture is of particular interest; some authors suggest it
might significantly alter information diffusion (Bala
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and Goyal 1998). The usual definition of “cluster-
ing” relies on the proportion of transitive triples, or
“friends who are also friends of friends.” It may be
defined by averaging the proportion of neighbors of
node i who are also connected together:

c3(i) =
[number of pairs of connected neighbors of i]

ki · (ki − 1)/2
(1a)

with ki the degree of node i. Empirical social networks
are known to exhibit an abnormally high average clus-
tering coefficient 〈c3〉, compared to those found in SF
and ER random networks (Newman and Park 2003);
many models traditionally try to rebuild this statis-
tical parameter as well. Our real networks do not
derogate from this rule. RN1 exhibits a high 〈c3〉 of
.827, while SF1 only has a 〈c3〉 of .00539. We observe
the same discrepancy in the second network: cluster-
ing in RN2 is high (〈c3〉 = .889) while it is two orders
of magnitude smaller in SF2 (〈c3〉 = .00395).

In an attempt to reconstruct a network topology
that preserves both degree distribution and high 〈c3〉,
we consider a last network model mimicking the orig-
inal event-based structure (i.e. its collaboration or co-
appearance structure):

• Event-Based — We introduce a bipartite graph
featuring agents on one side, events on the other
side, and first assign to each agent and respec-
tively to each event a “degree” drawn from em-
pirical degree distributions. Put differently, the
bipartite graph preserves the empirical distribu-
tions of agents per event and of events per agent
— it maintains the original number of events fea-
turing a certain number of agents, and recipro-
cally. Then, we link agents to events randomly,
respecting their respective degrees. Finally, we
compute the projection of this graph onto agents
to build the collaboration network: two agents are
linked when they participate in the same event.

The EB model yields networks which are closer to
RN than SF in the sense that they keep more topo-
logical features:

1. We conserve the degree distribution, like in the
SF case: the projection of a bipartite graph,
whose distribution from agents to events exhibits
a given power-law tail (as it does here) exhibits
the same power-law tail (same exponent of the
power law) (Guillaume and Latapy 2004).

2. We also conserve the clustering structure, unlike
in the SF case: indeed, the clustering coefficient
of the projection is high because of the clique-
addition process precisely due to the projection;
put simply, it is due to the joint involvement in
common events — the empirical networks come

from collaborations or participations in a com-
mon board, which implies cliques and thus more
triangles (Newman et al. 2001; Guillaume and
Latapy 2004).

Empirically, EB rebuilds fairly well both the degree
distribution and the 〈c3〉 clustering structure, with
the same number of nodes and thus roughly the same
number of links — see Fig. 1 and Tab. 1.

A finer clustering structure has more recently been
introduced, which relies on the proportion of transitive
diamonds, or “friends of friends who are also friends of
other friends.” This “diamond coefficient” may be de-
fined as the average proportion of common neighbors
among the neighbors of a node i (Lind et al. 2005):

c4(i) =

ki∑
i1=1

ki∑
i2=i1+1

κi1,i2

ki∑
i1=1

ki∑
i2=i1+1

[(ki1 − κi1,i2)(ki2 − κi1,i2) + κi1,i2 ]

(1b)
where κj1,j2 is the number of nodes which the j1-th &
j2-th neighbors of i have in common (leaving out i).

EB1 acceptably approaches the 〈c3〉 of RN1, but
falls short of one order of magnitude for 〈c4〉, sug-
gesting that even an event-based reconstruction still
misses part of the community structure of RN1. On
the other hand, EB2 yields a 〈c4〉 of .280 which is
closer to the 〈c4〉 of .415 for RN2. Values for these
statistical parameters are gathered on Tab. 1.

Other topological features could also have been ex-
plored —such as path lengths (Zegura et al. 1996),
mutuality (Newman 2003), cycles (White et al. 2006),
inter alia— yet this selection of basic features will al-
ready provide significant discrepancies in the results
between realistic settings and traditional models, act-
ing as a convincing counter-example of the adequacy
of the latter to mimick the former, even for our selec-
tion of statistical parameters.

To summarize, for each of our two real networks,
we considered five distinct topologies: (i) real net-
work RN, (ii) event-based network EB, (iii) scale-free
network SF, (iv) Erdős-Rényi random graph ER, (v)
complete network CN.

4.4 Simulation

As we focus on topology, we consider here the simplest
interaction rule possible: the target agent automati-
cally acquires the piece of information when his inter-
locutor already has it. A set of one thousand random
instances of each kind of network is created (excepted
for real and complete networks which are naturally
unique). For each instance, we only work with the
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RN1 SF1 ER1 CN1 EB1
N 6453
M 6.74 · 104 2.08 · 107 7.62 · 104

d .00162 1 .00183
degree dist. power-law tail Poisson — power-law tail
〈c3〉 .827 .00539 .00199 1 .753
〈c4〉 .284 .000444 .000261 1 .0443

RN2 SF2 ER2 CN2 EB2
N 4656
M 7.66 · 104 2.17 · 107 7.68 · 104

d .0035 1 .0035
degree dist. power-law tail Poisson — power-law tail
〈c3〉 .889 .00395 .00403 1 .897
〈c4〉 .415 .000462 .000386 1 .280

Table 1: Main characteristics of the various network structures derived from the real networks RN1 and RN2 in
terms of: number of agents N , number links M , density d, degree distribution shape and clustering coefficients
〈c3〉 & 〈c4〉 (averaged quantities over 1000 networks for SF, ER & EB).

largest connected component, which is never made of
less than 99.9% of the nodes (i.e. in the worst case,
a negligible number of nodes is disconnected and left
out). We then cast randomly the fraction λ of initially
informed nodes over this giant component, and start
the simulation. With connected networks, as is the
case, the final asymptotic state of the system is obvi-
ously ρ(∞) = 1. We are thus essentially interested in
the shape and speed of convergence to that final state.

On Fig. 2 is plotted the temporal evolution of ρ for
each network topology (averaged over simulations on
1000 random instances). We observe that the dynam-
ics are pretty similar when comparing the two original
networks. The closer we are from the real network,
the slower the dynamics — CN performs the fastest,
RN the slowest. More precisely and most surprisingly,
ER and SF networks seem to behave identically by
showing extremely similar convergence shapes. On
the contrary, the behavior of EB is slower than other
topologies, even being the best approximation of RN,
although with contrasted results: while EB2 provides
a satisfactory reconstruction of the diffusion dynam-
ics on RN2, the reconstruction offered by EB1 still
diverges significantly from the behavior of RN1.

Our results are qualitatively only marginally sensi-
tive to the initial proportion of informed nodes λ even
if, the smaller λ, the slower the dynamics (see Fig. 2–
inset for λ = .002 vs. λ = .02). Hierarchy in conver-
gence speed is independent of λ: CN always performs
fastest, followed by ER and SF, then EB, and finally
RN. Asymptotically, when λ goes to 1 all dynamics
become similar.

4.5 Degree distribution, clustering
structure, and real networks

As such, diffusion on RN is slower than on any other
topology studied here. This may be due to its complex
underlying community structure, consistently with
common claim in innovation studies that when agents
are likely to interact more with agents they know and
less with “remote” agents, it is less beneficial to knowl-
edge propagation (Granovetter 1973; Bala and Goyal
1998) — denser clusters arguably provide more re-
dundancies in the distribution of information among
neighbors. More to the point, as Granovetter (1973)
puts it, “if one tells a rumor to all his close friends, and
they do likewise, many will hear the rumor a second
and third time, since those linked by strong ties tend
to share friends.” A previous study by Bala and Goyal
(1998) argued that overlapping neighborhoods tend to
make the diffusion of innovation slower, Eguiluz and
Klemm (2002) later noted that epidemic threshold in
highly clustered scale-free networks exhibited differ-
ences with the result for randomly wired networks.

This might explain why we get slower diffusion with
EB than with SF, and even slower diffusion with RN in
general, whose alleged community structure — plau-
sibly constrained by paradigmatic fields, communities
of practice, etc. — could not be perfectly reproduced.
However, 〈c4〉 values seem to provide a good assess-
ment of the quality of this community structure recon-
struction: when 〈c4〉 is one order of magnitude smaller
in EB1 than in RN1, diffusion speed is indeed signifi-
cantly different; whereas when 〈c4〉 is comparable, like
in EB2 and RN2, diffusion speed too is comparable.

While it is likely that “the SF nature cannot be
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Figure 2: Simulation results for complete, Erdös-
Rényi, Scale-Free, Event-Based and real networks, us-
ing λ = 0.02 (outset) and λ = 0.002 (inset), along
with associated 99% confidence intervals. Topologies
built from the scientific collaboration network (top)
and the board interlock network (bottom).

neglected in the practical estimates of epidemic and
immunization thresholds in real networks” (Pastor-
Satorras and Vespignani 2002), it may well be far
from sufficient: not all SF networks are equal (May
and Lloyd 2001; Boguna and Pastor-Satorras 2002;
Eguiluz and Klemm 2002) and, here, the most ran-
dom SF network actually displays a behavior more
similar to ER than to RN — even if, for some other
models, there may be a more or less sensible behav-
ioral difference between SF and ER (Dorogovtsev and
Mendes 2003; Barthelemy et al. 2005), under our pro-
tocol they are negligible compared to RN. In contrast
and in particular, EB results suggest a special influ-
ence of community structure in general (Szendröi and
Csányi 2004).

4.6 Concluding remarks

The jury may thus be still out as to indicate
which topological features should absolutely be recon-
structed for an artificial network to behave realisti-
cally with respect to some phenomena. Meanwhile,
when possible, it could be safer to make an extensive
usage of real network topologies when developing dif-
fusion models. This attitude implies a pre-eminent
role for simulations: if one needs analytical results on
a given diffusion phenomenon, thereby requiring a the-
oretical social network model, one should check first
that simulations provide matching behaviors on a real
social network — or several ones, as it may also be in-
teresting to compare how different diffusion dynamics
behave on various empirical networks.

5 Effect of transmission rules

The protocol we presented in the previous section,
where any interaction entails information transmis-
sion, is simple yet wholly arbitrary. In this section, we
investigate transmission rules: as mentioned in the in-
troduction, many varied knowledge transmission pro-
cesses have been proposed in the literature. In the
case of discrete information propagation, in particu-
lar, the “threshold model” — agents adopt knowledge
if a given number or fraction of their neighbors al-
ready have — is a widespread reference (Granovetter
1987; Valente 1995; 1996; Abrahamson and Rosenkopf
1997; Lew 2000; Gruhl et al. 2004), while the “cascade
model” is also commonly used — agents have a given
probability of adopting after interacting with already-
informed neighbors (Goldenberg et al. 2001; Kempe
et al. 2003).

Thus, and more broadly, we wish to appraise the
success of some of these traditional models in ap-
proaching empirically-measured behavior — as we
have seen, real networks may behave quite differently
than classical scale-free networks: now, how much
canonical models may now deviate from empirical phe-
nomena? How realistic, then, should diffusion mecha-
nisms be?

In a fashion similar to what we did for the topol-
ogy, we start with real-world data and consider vari-
ous “degenerate” knowledge adoption behaviors which
rely on canonical models. The model parameters will
be chosen as best approximations of empirically ob-
served behavior. We use RN as the underlying social
structure.

5.1 Empirical influence mechanism

To design our original “empirical-based” transmission
mechanism, we use empirical data extracted from a
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Figure 3: Final probability of adoption P (n) after
n recommending interactions (Pmax = 0.4). Empir-
ical data adapted from (Leskovec et al. 2006), where
Pmax = 0.04 (see Fig. 4 for a discussion on Pmax val-
ues).

case study by (Leskovec et al. 2006), in which the
propagation of a buying behavior is described — rec-
ommendations for acquiring DVDs are transmitted
over an e-mail-based social network, and could be fol-
lowed or not. Rather than focusing on this precise case
study and its particular context, we use this data as
an empirical illustration of the shape of one adoption
behavior, among others.

This empirical data features the probability of
adopting a recommendation after a certain number
of received recommendations, that is, it is a final ob-
servation. More precisely, we know the probability
P (n) of having bought some item given that n recom-
mending interactions for this item have occurred (see
Fig. 3). Assuming that this process is the final out-
come of a series of interactions where adoption was
possible and probable after each interaction, we may
deduce the adoption probability for each particular
interaction. In other words, we can deduce the prob-
ability of adoption exactly at the n-th recommending
interaction, given that there have already been n − 1
recommending interactions. We call this probability
p(n), which is precisely of interest for interaction-by-
interaction models such as those we are working with
here.

We have:

P (n) = 1−
n∏
i=1

(1− p(i)) (2)

from which it is straightforward to deduce that:

p(n) =
P (n− 1)− P (n)
P (n− 1)− 1

(3)

as we assume that p(i) are independent one each other.
Thus, the probability of adopting at each n-th inter-
action with an informed neighbor is p(n).

It might be noted that empirical data used here is
slightly mismatching — we eventually examine rec-
ommendation behavior over a scientific collaboration
network. We acknowledge this, while it should also
be irrelevant to our point, as we aim at investigating
discrepancies between reality-inspired hypotheses and
their traditional stylization. Anyhow, empirical data
in this area is still scarce,6 and it is likely that the con-
tinuation of this kind of study would rather involve a
comparative study between various real-world behav-
iors (and topologies). Indeed, even in this case, a great
variance should be encountered — for instance when
scientists from distinct fields do not behave similarly in
forming their network (e.g. mathematicians and neu-
roscientists (Barabási et al. 2002)), or when adoption
behaviors in a similar area are to be rather dissimilar
(e.g. DVDs and books (Leskovec et al. 2006)).

5.2 Models

We focus on classical threshold and cascade models.
The classical models have no reason a priori to be
consistent with empirical data in the general case,
nonetheless one could design a stylized mechanism
such that it is the closest possible to the observed be-
havior, fitting model parameters in this regard.

It is also noteworthy that individuals should not
be necessarily eventually convinced. Some pieces
of information might be less convincing than oth-
ers. Adoption mechanisms should consequently be
“capped” by a maximal final probability of adoption
Pmax, as is observed empirically: ∀n, P (n) ≤ Pmax

and ∃n0, P (n0) = Pmax — after a certain number of
interactions, no persuasion is possible anymore. In the
original case study, Pmax ≈ 0.04.

We investigate three kinds of knowledge transmis-
sion behaviors: an empirical data-based model, and
corresponding best-approximation threshold and cas-
cade models for different value of Pmax. In the general
case we have:

• Realistic Model (RM) — PRM(n) = Pempirical(n)
corresponds to the empirical observation. pRM(n)
is computed using Eq. 3.

• Threshold Model (TM) — In this model, before a
given number of interactions ν (the threshold),
agents have no chance to adopt; past ν, they

6Similarly to Leskovec et al. (2006), Backstrom et al. (2006)
have measured the propension to join a “LiveJournal” commu-
nity as a function of the number of friends already present in
the community.
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adopt with probability Pmax. That is, for n in-
teractions with n 6= ν, p(n) = 0, if n = ν,
p(n) = Pmax. The final adoption probability is
thus:

PTM (n) = Pmax ·Hν(n)

where Hν is a threshold function: Hν(n) = 1 if
n ≥ ν, 0 otherwise.

• Cascade Model (CM) — We suggest a “capped”
cascade model, that is, a cascade mechanism
where the final adoption probability is bounded
by Pmax; thereby providing a simple way to model
saturation, as decreasing cascade models do in
a similar manner (Kempe et al. 2005). Thus,
p(n) = p is the (fixed) probability of adopting
at each interaction, but after a given number of
interactions ν, p(n) = 0, for n ≥ ν. The final
adoption probability is thus:

PCM (n) = 1− (1− p)min(n,ν)

Clearly, p = 1− (1−Pmax)1/ν ; thus, once Pmax is
chosen, CM depends on only one parameter, say
ν, as TM does.

Note that in terms of the simple model (SM) pre-
sented in Sec. 4.4 for the study of the topology, we
would have Pmax = 1 and, trivially, ∀n ≥ 1, both
pSM (n) = 1 and PSM (n) = 1. Actually, SM is equiv-
alently a TM with ν = 1 or a CM with p = 1, ν > 0.

5.3 Simulation results

We simulated these different interaction rules on the
real network 50 times, for different values of Pmax. In-
deed, to study the influence of Pmax we use several
values Pmax ∈ {0.04, 0.4, 0.7, 0.99}. To design the cor-
responding best-approximation TM and CM for each
Pmax, we consider a simple homothetic transforma-
tion of the original empirical results. Then, we fit p
and/or the threshold ν for both CM and TM by mini-
mizing squared distance between the original empirical
model RM and CM or TM; respectively

∑
n(PCM (n)−

PRM (n))2 and
∑
n(PTM (n) − PRM (n))2. A graphi-

cal representation of fitted PTM and PCM is given on
Fig. 3 for Pmax = 0.4.

For every given Pmax, we plot the average value of
ρ over the 50 simulations — see Fig. 4. All models
converge towards an identical final state ρ(∞) ≤ Pmax.

We also observe that ρ(∞) decreases with smaller
values of Pmax. Theoretically indeed, the expectancy
of ρ(∞) is less or equal to (λ+ (1− λ)Pmax), because
each initially ignorant node has at most probability
Pmax to be convinced over the whole simulation; yet,
some agents may never meet informed neighbors, es-
pecially if Pmax is low, hence having no chance at

all to adopt the information. As Pmax decreases, the
set of such isolated nodes grows, while ρ(∞) = 1 for
Pmax = 1.

Convergence is also faster when Pmax increases, in-
dependently of the chosen model. Yet, as Pmax in-
creases, both RM and CM are distinct from TM. For
larger Pmax, TM does not provide a satisfactory model
to retrieve real convergence dynamics. As plotted on
Fig. 5, the relative error between RM dynamics and
TM or CM (computed as ‖ρRM − ρTM‖/‖ρRM‖ and
‖ρRM−ρCM‖/‖ρRM‖ respectively) invalidates TM for
large Pmax while it appears to approximate better RM
for lower Pmax. Still, CM is a better yet not perfect
approximation of RM, even if the discrepancy between
CM and RM seems small (Fig. 3).

Figure 5: Relative error between Threshold and Cas-
cade model compared to Realistic Model.

Certainly, the classical TM could be improved
within this kind of protocol by distinguishing various
classes of agent with distinct thresholds, as in Valente
(1996)’s study, thus plausibly yielding better results.
Many other improvements of diffusion models could
be thought of: for instance for the cascade model, a
decreasing probability of persuasion with the number
of interactions, such as p(n) = p/αn with α > 1 — see
also (Kempe et al. 2003) for a generalized framework.
Our aim is however not to extensively review and com-
pare the behaviors of various classes of models, ven-
turing into the vast collection of adoption mechanisms.
Rather, we wish to show how classical assumptions like
Cascade and Threshold Models may yield contrasted
results; as it was with the topology: classical assump-
tions that scale-free features are sufficiently valid eas-
ily prove to be surprisingly erroneous with respect to
realistic settings.

On the other hand, new studies may uncover rad-
ically distinct behaviors for which both TM and CM
models may altogether be invalidated: Leskovec et al.
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Figure 4: Evolution of ρ for RM, TM and CM, given four distinct Pmax, from left to right and from top to bottom
: Pmax = 0.99, Pmax = 0.7, Pmax = 0.4, Pmax = 0.04. Confidence intervals (99%) are also shown. Insets exhibit
asymptotic behavior for large time steps.

(2006)’s data on book recommendation, in particu-
lar, exhibit a decrease in the final adoption probabil-
ity, indicating indeed that a higher number of inter-
actions makes buying behavior less probable, which is
thus inconsistent with the assumption that there ex-
ists an adoption probability at each step p(n).7 On the
whole, we suggest that future investigations of diffu-
sion mechanisms should begin with adequate empiri-
cal protocols, then propose adapted modeling frame-
works.

6 Conclusion

Even for the simplest transmission mechanisms, re-
sults on our two real-world social networks cast strong
doubt, as counter-examples, on the efficiency of clas-
sical stylized network models. Secondly, even very ba-
sic yet credible variations between usual knowledge
transmission mechanisms and realistic ones may yield
sensibly distinct outputs. More to the point,

7It is unclear whether such feature may or may not be ac-
counted for by the aggregation of different categories of products
and/or agents.

• SF topology is usually seen as crucial improve-
ment over ER, but actually for simple protocols,
SF is like ER and still very different from RN.
Community structure seems to affect results even
more than degree distributions, as partially sug-
gests EB.

On the whole, a social network morphogenesis
model successful in reproducing some real-world
topological features could be deemed succesful
for appraising a knowledge diffusion phenomenon
only if its behavior is appraised against a real net-
work RN. If identical, it can be taken as a valid
model for the given knowledge diffusion model,
and analytical solutions could follow.

• CM/TM are canonical & credible diffusion mod-
els, but actually when fitted against a realistic
mechanism, they are not as accurate, even on
a RN. This is particularly true for the tradi-
tional TM, even if this does certainly not mean
that there may not be other situations where TM
would be accurate. On the other hand, all such
models may be found to be inappropriate in some
settings. In contrast, relying on the empirical
model may be safer than adopting prima facie
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any canonical model.

Beyond these conclusions, our point is also strongly
epistemological, by insisting that, when it matters,
empirical knowledge diffusion mechanisms should be
appraised before any modeling attempt and, similarly,
underlying social network topologies should, if possi-
ble, constitute an empirical benchmark. Obviously it
is way beyond the scope of this paper to carry such
study even on the partial typology of topologies and
knowledge transmission mechanisms we sketched out
in the introduction, yet, in front of the great vari-
ability in diffusion phenomena between even the most
canonical and standard ones, it could be suggested
that extreme care should be foremost given to empir-
ical measurements towards realistic assumptions.

Eventually, theoretical frameworks (scale-free net-
works or threshold models) for which parameters are
empirically fitted (exponent of the power law or the
threshold itself) could be driven a priori by real-data-
based mechanisms and topologies, and the subsequent
simulation-based comparisons and validations.
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