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Les réseaux à structure de groupe sous-jacente induisent mécaniquement la création de cycles: chaque groupe peut être
interprété comme un hyperlien connectant l’ensemble de ses noeuds les uns avec les autres, soit l’ajout d’une clique
dans le réseau monoparti projeté. Nous nous intéresserons ici à l’origine des cycles de tailles n (3 ≤ n ≤ 5) associés
à des coefficients de clustering généralisés jusqu’à l’ordre 5 (c3, c4 et c5) dans des réseaux à structure de groupe
(ou d’hypergraphe) sous-jacente. Ces paramètres topologiques peuvent-ils être expliqués uniquement par le processus
spécifique de génération à base d’hyperliens, ou d’autres processus doivent-ils être invoqués? Nous mesurons ainsi
ces motifs cycliques sur un ensemble de réseaux réels et distinguons deux catégories de cycles — “structurels” ou
“séquentiels” — dont on évalue la part respective en fonction du type de réseau et de n, puis nous estimons la quantité
de chaque type de motif obtenue à partir de différents modèles aléatoires de réseaux à base d’hypergraphes, en nous
appuyant sur le cadre formel récemment introduit par Mahadevan [MKFV06]. Nous nous en inspirons pour proposer
un modèle original à même de reconstruire l’ensemble des motifs sur l’ensemble des graphes réels étudiés.
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Introduction
We focus on networks featuring an underlying group structure, a.k.a. group-based or event-based networks.
Affiliation networks, for instance, are such networks: nodes are affiliated with groups (or events), and the
corresponding graph is such that links appear between all nodes belonging to a same group (or event). These
networks may simply be described either (i) as the monopartite projection of a bipartite graph, where nodes
on one side are linked to groups/affiliations on the other side, or (ii) as the projection of a hypergraph where
hyperlinks gather nodes belonging to a same group or event.

As such, a group or event induces a clique in the resulting graph. Its structural properties are plausi-
bly influenced by this phenomenon: as a first effect, cliques of size 3 and more automatically inflate the
number of cycles of size 3, or “triangles” — in other words, the presence of clustering is likely to be signif-
icantly influenced by the group-based nature of the network [NSW02]. It seems reasonable to expect that
cycles of any length, in general, may simply be due to clique-generation processes, at least in a large part.
More broadly, this process may also be responsible for numerous other patterns of interest, as suggested in
[MIK+04] — such exhaustivity, however, is beyond the scope of the present paper, and we address the fol-
lowing simple question: to what extent the cyclic structure observed in these networks could be explained
by the underlying hypergraph structure?

This issue is strongly similar to the measure of clustering coefficients in graphs. In the remainder, we
distinguish the monopartite graph and its underlying hypergraph, the former being the projected graph of
the latter; and we define clustering as the normalized ratio between the number of triangles N4 and the
number of connected triples N∧ in the monopartite graph, i.e.: c3 = 3.N4

N∧
. This definition can be generalized

to longer cycles: we thus note c4 = 4.N♦
Nu

, c5 = 5.ND
N∧∧

, etc. More generally we define the n-order clustering
coefficient cn as the ratio between the number of cycles of length n, and n times the number of broken cycles
of length n, where a broken cycle is defined as a cycle where at most one edge has been removed.
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network Na Ng ka kg k N4 N1gr4 Nseq4 N∧ c3
Arxiv 16400 19885 2.80 2.31 3.60 17.82 16.31 1.51 231 0.23

Medline 13151 5916 1.77 3.94 6.43 94.17 92.82 1.35 526 0.54
TheyRule 4300 493 1.29 11.22 14.07 110.52 110.32 0.20 537 0.62

DutchElite 395 200 2.22 4.39 9.09 2.93 2.75 0.18 26.6 0.33

Table 1: For each network, number of actors Na, number of groups Ng, avg. number of groups per actor ka, avg. size
of groups kg, average degree k in the resulting monopartite graph — number of thousands of triangles N∆, of triangles
due to a unique event N1gr∆ or to several events Nseq∆; number of thousands of forks N∧ and clustering coefficient c3.

Measures on real networks
Empirical datasets. We use four networks in our empirical evaluation†. Two are collaboration networks,
featuring scientists coauthoring papers (i.e. groups are paper authors): Arxiv, extracted from preprints on
the “arXiv cond-mat” database; and Medline, extracted from the “Pubmed” bibliographic archive, using the
specific keyword “biomedicine”. Two are interlock networks, produced by linking individuals belonging
to the same board (i.e. groups are boards): TheyRule features the collection of U.S. top companies boards;
DutchElite gathers affiliations of officials in the main national institutions of the Netherlands. Their basic
features are given in Tab. 1.
Structural vs. sequential cycles. Hypergraph-based networks seem to be ubiquitous whenever social
mechanisms are at work; in such networks indeed, groups (or events) gather agents thus induce cliques.
Cycles in the monopartite graph may thus partly be a mechanical feature, in the sense that it is merely
caused by the construction of the monopartite graph from an underlying hypergraph.

Nevertheless, non-mechanical processes may also
account for the presence of cycles: for example in
the case of 3-sized cycles, or triangles, A interacts
with B in a group, B interacts with C in another
group, and then A interacts with C in a later group
— this is usually called “transitivity”. In this set-
ting, we thus distinguish two kinds of triangles in the
monopartite graph. On one hand, “single-group” or
“structural” triangles (N1gr4) result (at least) from
one single group gathering 3 nodes (or more) at
once. On the other hand, “sequential triangles”
(Nseq4) are created by a sequence of 3 events, none
of them involving the entire triple of nodes (Fig. 1).‡
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Figure 1: A triangle in the monopartite graph can arise
from two kinds of configurations in the underlying hyper-
graph: on top, single-group triangle; at the bottom, se-
quential triangle made of three different groups.

In real networks, triangles are massively due to groups (Tab. 1): triangles stemming from a triad of groups
are generally rare, and thus structural triangles are responsible for most of the clustering.

The notion of structural or sequential triangles can easily be extended to longer cycles: we may measure
the number of diamonds or pentagons (cycles of length 4 or 5) produced by a single group and define
sequential diamonds or pentagons as any cycle (of length 4 or 5) which is not based on a unique grouping.
Contrary to triangles, results in Tab. 2 show that in most cases the proportion of higher-length sequential
cycles is not negligible anymore — their presence may therefore not be explained only by the underlying
clique aggregation process, i.e. by the fact that the monopartite graph is based on a hypergraph.

Morphogenesis models
Trivial underlying hypergraph. Since most triangles are structural, it seems plausible that a network
model mimicking just the underlying hypergraph structure would lead to the same c3 clustering coefficient.
† Data available on, respectively: http://www.arxiv.org, http://www.ncbi.nlm.nih.gov/sites/entrez, http://www.theyrule.net,

http://vlado.fmf.uni-lj.si/pub/networks/data/2mode/DutchElite.
‡ Here, triangles corresponding to both a single group and a sequence of groups are thus counted, by definition, as “structural”, not

“sequential”, triangles (“there is at least one group involving the entire triple”). Empirically, this mixed case is negligibly rare.
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network N♦ N1gr♦ Nseq♦ Nt c4 ND N1grD NseqD N∧∧ c5
Arxiv 43.5 15.4 28.1 2,060 0.084 159.8 13.0 146.8 20,347 0.039

Medline 717 545 172 7,265 0.39 7,091 4,260 2,831 114,280 0.31
TheyRule 930.8 904.5 26.3 10,374 0.36 8,698 8,095 603 194,680 0.22

DutchElite 14.86 9.89 4.97 375 0.16 103.9 40.2 63.7 5,274 0.10

Table 2: For each network, number of thousands of: diamonds (resp. pentagons) N♦ (ND), diamonds (resp. pentagons)
due to a unique event N1gr♦ (N1grD) or to several events Nseq♦ (NseqD); and broken diamonds (resp. broken pentagons)
Nt (N∧∧) along with the clustering coefficient c4 (resp. c5).

Some authors indeed already suggested [NSW02, GL04] that this very feature could be reconstructed by
a traditional null-model of bipartite graph (or hypergraph), the Molloy-Reed (MR) model [MR95]. MR
generates a random bipartite graph with the same connectivity distributions from one side to the other side
of the bipartite graph — in other words, MR generates a hypergraph made of as many hyperlinks of a given
size as in the original hypergraph, with nodes belonging to as many hyperlinks as well.

In order to assess how a trivial underlying hypergraph structure may account for the monopartite topo-
logical features, we therefore first perform simple MR reconstructions of our 4 empirical cases — in other
words, we thus preserve the degree distribution of nodes to groups and the size distribution of groups. Ta-
ble 3 gathers results concerning both structural and sequential length n cycles (for n = 3,4,5) on 20 distinct
MR realizations, to be compared to original graph values (NB: all simulation results in this paper have
standard deviations within 5%of the presented values).

network N4 N1gr4 N∧ c3 N♦ N1gr♦ Nt c4 ND N1grD N∧∧ c5

Arxiv 18.7 18.5 518 0.11 19.6 16.2 6,685 0.012 48.9 13.3 86,132 0.0028
Medline 105.3 103.9 1,459 0.22 625 575 38,775 0.064 5,586 4,365 1,031,746 0.027
TheyRule 110.4 110.3 541 0.61 908 905 9,612 0.38 8,175 8,095 171,539 0.24

DutchElite 3.03 2.76 30.2 0.30 16.36 9.89 484 0.14 136.1 40.2 7,633 0.089

Table 3: For each MR-reconstructed network, number of thousands of (i) 3-node patterns: total triangles (N4) and
triangles coming from a unique group (N1gr4), broken triangles, or forks (N∧) and clustering coefficient c3; (ii) 4-node
patterns (N♦, N1gr♦, Nt) and c4; and (iii) 5-node patterns (ND, N1grD, N∧∧) and c5.

Because structural triangles, diamonds and pentagons are directly induced by groups (which size distri-
bution is the same as in the original network), these values are unsurprisingly acceptably reconstructed by
MR graphs. The story is much different for sequential cycles, and two classes of networks are exhibited.
Interlock networks, on one hand, display acceptable fits for cycles, and broken cycles as well, (in the vicin-
ity of 10% around the empirical value), consistently with partial previous research [RA04]; in this case,
these features are plausibly an artefact of the underlying hypergraph structure. Collaboration networks,
on the other hand, are not properly reconstructed by a simple hypergraph structure: be it either (i) for cy-
cles of length n ≥ 4,often under-estimated by MR-graphs, or (ii) for broken cycles of any length, often
over-estimated by MR-graphs (e.g. the number of broken triangles, or forks, is at least twice larger). Con-
sequently, clustering coefficients are not correctly reproduced for these graphs, because of reconstruction
failures for both cycles and broken cycles. The limitation of a simple hypergraph-based model for collab-
oration networks may be typical of non-artefactual, complex social processes. For instance, some kind of
social transitivity (transitive creation of new relationships among “friends of friends”) may be needed if we
want to account for the large value of the clustering coefficients when compared to random networks.
Underlying hypergraph models. We propose to extend the MR model to constraints stronger than just
bipartite degree distributions, yet still pertaining to the underlying hypergraph structure, and particularly to
distributions of grouping and affilition sizes. In a recent paper, Mahadevan et al. [MKFV06] introduced
random graph generation methods aiming at reconstructing increasingly more properties of an original input
graph G by fitting increasingly detailed correlations on degrees in the original graph. This reconstruction is
based on the notion of “dK distributions”, where a larger value of d corresponds to more constraining degree
correlations. For example, 0K-graphs only reconstruct the mean connectivity of G, 1K-graphs reconstruct
the original degree distribution, while 2K-graphs reconstruct the joint distribution of degrees of G, etc.

We will thus elaborate upon this approach by adapting it to bipartite graphs. Note that in this framework,
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MR is equivalent to a bipartite version of the 1K-graph, constraining both degree distributions. By analogy
with a bipartite 1K reconstruction, we shall denote MR as an “1BK-graph”.

On the whole, constraints induced by 1BK-graphs seem too weak to yield a proper reconstruction of
collaboration networks. We suspected higher-level correlations between actor degrees and group sizes to
play a role in the observed discrepancy, and therefore introduced bipartite versions of 2K and 3K models,
as 2BK and 3BK models — in the 2BK case, e.g., we thus fit degrees at the end of bipartite links.

Nonetheless, these models still failed to account for the number of cycles and broken cycles of collabo-
ration networks. The observed cyclic structure seems independent of strictly structural constraints, at least
those induced by the first dBK reconstructions only respecting degree correlations (0BK, 1BK, 2BK and
3BK). To be sure, yet, we propose an alternative to 2BK, called “2BK′ reconstruction” preserving the orig-
inal joint distribution of degrees — like in the 2BK case — and preserving, for each bipartite link (node v
↔ group g), the sum of degrees of nodes connected to group g and the sum of sizes of groups connected
to actor v. In other words, we conserve the following probability distribution: P(∑l∈Vi

Kl ,ki,K j,∑l∈V j
kl)

(where Vi denotes the (bipartite) neighborhood of node i, ki the number of groups in which node i takes
part, K j the size of group j).

Results of the 2BK′ reconstruction fit much more satisfyingly original values of collaboration networks
— the amount of 3-, 4- and 5-node cycles and broken cycles is now suitable (see Fig. 2), while the ratio of
sequential vs. structural cycles is also correctly reproduced. In short, the corresponding topology may well
be explained, still, by a simple kind of degree correlations in the underlying hypergraph.
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Figure 2: For each network and each pattern (at left: 3, 4 and 5-nodes cycles; at right: 3, 4 and 5-nodes broken cycles),
we compare the ratios between their real value and their 1BK and 2BK′ reconstructions (resp., empty and full boxes).

Conclusion
Classical hypergraph-based models reconstruct well several cyclic patterns (cycles and broken cycles of
length 3, 4, 5 and corresponding clustering coefficients) for some networks with an underlying hypergraph
structure — namely, interlock networks. Other such networks, including collaboration networks, seem to be
properly reconstructed by a slightly alternative hypergraph-based model (2BK′) using another distribution
of higher-range degree correlation. Contrary to the basic models, this one can account for the proportion
of structural and sequential patterns, reconstructing therefore the clustering properties of various types of
networks with accuracy. On the whole, we thus show that most of these cyclical features are likely to
stem first from constructional phenomena linked to the underlying hypergraph only, rather than peculiar
processes and interaction behaviors proper to the particular real-world context of the graph. Extensions to
other empirical settings would be most fruitful to assess the generality of these results.
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